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VIBRATIONAL CHARACTERISTICS OF SOIL 
DEPOSITS WITH VARIABLE WAVE VELOCITY 

GEORGE GAZETAS~ 
Department of Civil Engineering, Rensselaer Polytechnic Insiiiuie, Troy, N. Y. 12181, U.S.A. 

SUMMARY 
The paper studies certain dynamic characteristics of soil deposits with wave velocities increasing with depth 
according to (l+pz)'", where m = 1, 2/3, 1/2, 1/4 and 0. Analytical solutions are presented for the 
fundamental periods, mode shapes and amplification functions due to vertically propagating shear waves 
and the effects of type (m) and rate ( p )  of heterogeneity are systematically investigated. Then analytical- 
numerical techniques are used to study the attenuation with depth in a deposit of the vertical and horizontal 
displacements due to travelling of Rayleigh waves. Differences attributed to different heterogeneities are 
discussed in connection with the machine isolation problem and the steady-state vibration technique for 
soil exploration. Finally, the dependence on soil heterogeneity of the time-distance response curves, 
obtained during seismic refraction surveys, is graphically illustrated. 

INTRODUCTION 

The dynamic characteristics of soil deposits are of interest to civil engineers involved in the 
design or isolation of machine foundations, the protection of structures against earthquakes, the 
safety of offshore platforms and caissons during wave-storms, etc. For example, resonance 
phenomena during foundation vibrations have been observed to occur at frequencies closely 
related to the natural frequencies of the underlying soil deposit.'-3 Also, to effectively isolate 
structures and machine foundations from ground transmitted vibrations (passive or active 
isolation) trench barriers are constructed. Determination of their location and depth depends on 
how the energy from Rayleigh or Love waves varies with depth from the surface and with 
distance from the source, in the particular soil Furthermore, surface acceleragrams 
recorded during earthquakes reflect to some degree the dynamic characteristics of the near- 
surface soil layers at the recording site. Recently proposed or established seismic codes in many 
countries with high earthquake activity (e.g. Japan, Chile, Mexico, Turkey, U.S.A.) specify 
design spectra which depend on the fundamental period of the soil deposit that underlies the 
structure. 

In recent years, certain vibrational characteristics of soil deposits and their importance in 
specific areas of soil dynamics have been extensively studied. In particular, semiempirical, 
analytical and numerical methods have been developed to determine natural frequencies and 
amplification functions of soil deposits excited by S - ~ a v e s . ~ ' ~  Vibrations caused by Rayleigh or 
Love waves have also received some attention.'" Despite all the progress made, simple 
analytical solutions have always been in demand since they allow parametric studies to be easily 
performed and since they can be incorporated in building codes. Thus, in 1976, Dobry et u I . , ~  
motivated by the then forthcoming new UBC code, offered analytical solutions for the 

t Professor. 

0363-9061/82/010001-20$02.00 
@ 1982 by John Wiley & Sons, Ltd. 

Received 15 December 1979 
Revised 22 August 1980 



2 G .  GAZETAS 

fundamental periods of vibration of certain heterogeneous deposits due to vertically propagat- 
ing S-waves. 

This paper, an outcome of a broader effort to evaluate the importance of heterogeneities in 
soil dynamics, describes the study of four realistic types of heterogeneous deposits with wave 
velocities increasing with depth in proportion to (1 + p ~ ) ~ ,  where p is a positive constant and m 
is equal to 1,2 /3 ,  1/2, and 1/4 for each soil category, respectively. Analytical and analytical- 
numerical methods, appropriate for estimating the dynamic behaviour of such deposits due to 
vertical shear (S) or due to Rayleigh (R) waves, are presented. Comparative studies demon- 
strate the influence of the type (m) and of the rate ( p )  of heterogeneity on the fundamental 
period and the fundamental mode shape of the deposit, the amplification of vertically propagat- 
ing S-waves and the dispersion and attenuation with depth of Rayleigh waves. The importance 
of these effects in specific soil-dynamics problems is emphasized throughout the discussion. 
Finally, the dependence on soil heterogeneity of the time-distance response curves from seismic 
refraction surveys is illustrated. 

HORIZONTAL FREE VIBRATIONS-NATURAL FREQUENCIES 
AND MODE SHAPES 

The one-dimensional horizontal vibrations of a soil layer with variable shear modulus, G ( z ) ,  
and constant density, p, are fully described mathematically by the wave equation 

that controls the space and time variation of the horizontal displacements u = u(z ,  t), and by the 
two boundary conditions 

u(H, t) = 0 (2a) 

which, for the system of coordinate axes displayed in Figure 1, express the physical restrictions 
of zero shear tractions at the free surface and zero displacements at the soil-baserock interface 
(Figure 1). 

For a deposit with constant velocity or modulus (homogeneous deposit) equations (1) and (2) 
lead to natural periods and mode shapes given respectively by6 

- 4H 1 
T,, =- 

c 2 n - 1  

and 

(2n - l ) ~  z 
2 H  

- On(z) =sin 

(3) 

(4) 

with 

n = 1 , 2 , 3 , .  . 
Equations (3) and (4) will be used as reference in studying the effects of heterogeneity on natural 
periods, T, and mode shapes, U. 
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Figure 1 .  Heterogeneous soil deposit with coordinate axes 

Analytical solutions for T and U 

Go(l + 6 ~ ) ~  we define U ( z ,  w ) :  
Deposit with linear variation of velocity: c = co( l+  bz ) .  To solve equation (1) with G = 

( 5 )  u(z ,  t )  = U ( z ,  w )  exp (iwt) 

and introduce the transformation 

Equation (1) then reduces to 

and upon substituting 

one obtains 

Thus, the general 

whereby: 

77 = (1 + bz)r+1'2 

1 2  --= w2 - a + r  
Gob' 

olution f (1) can be written in the form: 

u(z ,  t )  = [ ~ ' ( 1 + 6 z ) ~ ' ~ " ' + B " ( 1 + ~ ~ ) ~ ' ' 2 ~ i " ] i " '  
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in which co is the shear wave velocity at the surface. Substitution of (7) into the boundary 
conditions (equation (2)) yields the following ‘characteristic’ equation 

(9) S,, In (1 + b H )  + arctan (2S,,) = n r  n = 1 , 2 , 3 , .  . . 

from which the eigenvalues S,, can be numerically recovered, for example using the Newton- 
Raphson method.” Calling 6’ = bH the dimensionless rate of heterogeneity, allows the natural 
periods of the deposit in horizontal shear vibrations to be expressed as 

4 H  n 
T,, =- n = 1 , 2 , 3 , .  . 

co i {4S2,+1}  

The eigenfunctions (modal shapes) are then given in a dimensionless form by 

where r’ = z / H  

The general solution to the 
wave equation (1) for a constant density unbounded medium having velocity c = co(l + /z ) * /~ ,  
has been published by Schreyer.” For a deposit resting on a rough base (Figure 1) the solution 
can be written as 

u ( z , ~ ) = ( I + & - ” ~  ( ~ ‘ e x p [ i s ( [ l + ~ ~ ] ’ ’ ~ - l ) ] + ~ ~ ~ e x p [ - i s ( [ + i z - ] ’ ’ ~ - 1 ) ] )  (12) 

Deposit with oelocity increasing according to : c = co( I i lz)? 

in which 

i= IH 

z‘= z / H  

Compliance with the boundary conditions (equation (2)) leads to the ‘characteristic’ relation: 

S,,[(1+~)‘/3-1]+arctan(S,,)=nr n = 1 , 2 , 3 , .  . . . (14) 

The natural periods of the deposit are obtained from 

4 H  3 n  T , = -  - 
co 21sn 

after S,, have been numerically computed from (14), and the corresponding mode shapes are 

u,, = (1 + sin (s,,[(I + - (1 + i)1/3]) (16) 

Natural periods and mode Deposit with velocity increasing according to c = co(l  +fz)’/’. 
shapes for such a profile have been obtained by Arnbraseys” and by Dobry et ai.:’ 

4H nk 
CO (1-k2)S, ,  

T =- 

U,, =Jo(kS,,[l +ff]’/2)Yo(S,,)- Yo(kS,,[l +fr’]’/2)Jo(S,,) 

n = 1 , 2 , 3 ,  . . . 
(18) 
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in which: f= fH; 2 = z /H;  k = (1 +f)-ll2; and Sn are the solutions of the 'characteristic' 
equation, CJ, (2 = 1) = 0.' 

Toki and Cherry13 have 
solved the wave equation for a class of deposits with modulus increasing in proportion to 
( z  +d)'/", n = 2 ,3 ,4 ,  . . . , and constant density, d .  For the particular case c = c ~ ( l  +gz) ' l4  
their general solution simplifies to 

Deposit with velocity increasing according to: c = co(l +gz)ll4. 

U ( z ,  w )  = (1 + @)1'4[E'J1/3(s(1 + E"Y1/3(S(l+ di)"")] (19) 

in which: 
kind, respectively. The 'characteristic' equation corresponding to (19) is 

= gH; J1/3( * ) and Y1/3( - ) are the Bessel functions of order 1/3, first and second 

in which: q = (1 +g)3/4. 
The solution of this transcendental equation with one of the standard numerical methods" is 

not recommended since it appears to be quite tedious to check their convergence. Instead, the 
computer algorithm ZEROIN developed at the Mathematical Center in Amsterdam, was 
implemented to solve equation (20). ZEROIN combines the bisection and the secant method 
and guarantees ~0nvergence. l~ 

Natural periods and mode shapes are then obtained from (21) and (22), respectively: 

Presentation of results-effects of type and rate of heterogeneity 

A convenient way to study the effect of the type and rate of heterogeneity on the fundamental 
period of a soil deposit on bedrock is by determining the error made when replacing the 
heterogeneous with a homogeneous medium having the same velocity at the middle of the 
deposit (thereafter referred to as "equivalent" homogeneous deposit). This is done in Figure 3 
which shows the ratio Tl/Fl of the fundamental periods of each type of heterogeneous deposit 
(equations (lo), (15), (17), (21)) to the period of a homogeneous deposit (equation (3)) versus 
the dimensionless rate of heterogeneity, 6. All deposits have the same S-wave velocity at a depth 
z = and, in particular, all the heterogeneous deposits have the same surface velocity, co as 
shown in Figure 2. Notice that, in such a case, the dimensionless rates of heterogeneity, [ fand  
g, of the deposits with non-linear variation of velocity with depth can be expressed in terms of 6 
by requiring that 

cH/2 = cO(1 + g$) = cO(1 + 4;)" (23) 

whereby: (4, rn) can be ([ 2/3), (1 1/2) or (g, 1/4). Thus, 6 alone expresses the rate of 
heterogeneity of all the deposits and from equation (23) one obtains 

(24) 
c H / 2  - CO b=2-  

co 

The following main conclusions are drawn from Figure 3. 
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Figure 2. Definition of ‘equivalent’ homogeneous and heterogeneous profiles 
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Figure 3. Variation of fundamental period with rate and type of heterogeneity 
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(i) The heterogeneous layers experience shorter fundamental periods and thus behave as if 
they are stiffer than the ‘equivalent’ homogeneous deposit, despite the larger, or at least equal, 
average velocity of the latter (Figure 2). The phenomenon is attributed to the sharper decrease 
of modal amplitudes with depth in the homogeneous strata, as illustrated in Figure 5 .  This in 
essence reduces the ‘effective’ thickness Her of these deposits (i.e. the thickness of the soil where 
vibration amplitudes are not negligibly small) and, thus, compensates for their smaller average 
velocity. t 

(ii) For a given value of 6’ (not larger than 7), the apparent stiffening of the deposit increases 
with the power, m, that describes the variation of velocity with depth, i.e. c = co(l + @ z ) ~ .  It is 
largest for m = 1 (linear variation) and smallest for m = 1/4 (fourth-root variation). That is, the 
closer to uniform the distribution of velocity with depth in a particular layer is, the larger the 
fundamental period of this layer becomes. 

(iii) With increasing 6, the heterogeneous layers become progressively stiffer in comparison 
with the equivalent homogeneous layer. However, it comes as a surprise that for a particular 
value of 6’, around 3, the relative stiffening effect reaches its peak; in other words, Tl/Tl has a 
minimum at approximately 6’= 3 for all types of heterogeneity ( m  = 1,2/3, 1/2, 1/4). The 
corresponding valley of the TI/TI vs. 6’ curve is most pronounced when m = 1 (linear variation 
of velocity) while it is almost imperceptible when m = 1/4. The phenomenon is reminiscent of 
the ‘optimum’ coupling that Schreyer” observed while studying the one-dimensional elastic 
waves produced in a heterogeneous ( m  = 2/3) halfspace by an exponentially decaying 
compressive pulse uniformly applied on the surface: for every value of loading decay rate, there 
exists a particular value of the rate of heterogeneity (I) for which the compressive impulse 
induced in the medium attains a maximum value. 

An alternate way to present the fundamental periods of the variable velocity deposits is by 
plotting the dependence of the “equivalent” depth, zeq, on the rate of heterogeneity, 6’. The 
‘equivalent’ depth zeq is defined (after Dobry et d7) as the depth at which the wave velocity c,, 
of the soil is such that the first natural period of the deposit is given by T = 4H/ceq. Figure 4 
depicts zeq (normalized with respect to layer thickness) as a function of 6’ for all four types of 
heterogeneity studied. (The definition of ‘equivalent’ depth is also graphically explained in the 
figure.) The reader may consult Reference 7 for additional discussion of the zeq concept. 

Finally Figure 5 demonstrates the sensitivity of the first mode shapes on the type ( m )  and the 
rate ( b )  of heterogeneity of a deposit. Notice in particular the very sharp increase of modal 
amplitudes near the surface of the layers with m = 1 and m = 2 / 3  for high rates 6: The 
dependence of the higher modal shapes on m and 6’, being of similar nature, is not discussed 
here. 

1 -DIMENSIONAL FORCED VIBRATIONS: SOIL AMPLIFICATION 
OF EARTHQUAKES 

Current procedures which are commonly used to study the effect of local soil conditions on the 
amplitude and frequency content of near surface motions are based on the assumption of 
vertically propagating S - ~ a v e s . ~ ”  This assumption has been employed because, within the 
present state-of-knowledge, it is practically impossible to accurately predict for a potential 
earthquake the nature of incoming waves, their angle of incidence and their relative amplitudes. 
Moreover, it is known that close to the epicentre, continuous transmission of upward propagat- 
ing S-waves through increasingly soft layers gradually changes their angle of incidence to near 
vertical.’ 

T Remember that T is proportional to He<. cav. 
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Figure 4. Variation of ‘equivalent’ depth ratio with rate and type of heterogeneity 

If a,(r)  denotes the baserock acceleration due to such vertical SV or SH waves (Figure l), the 
resulting horizontal displacements of the heterogeneous deposit relative to the base are 
governed by 

in which p is the critical damping ratio, herein taken as constant throughout the deposit. The 
term 1 + 2ip expresses in a linear fashion the hysteretic nature of soil damping.6 

For a deposit with linearly varying velocity with depth, c = co( 1 + bz) ,  the general solution of 
equation (25) is 

where U ( z ,  o) and F ( o )  are the Fourier amplitudes of the relative displacement, u(z ,  t )  and of 
the baserock acceleration, df) ,  respectively; B’ and B“ are integration constants. Satisfaction 
of the boundary conditions (equations (2)) leads after some simple mathematical operations to 
the following expression for the ratio between the Fourier amplitudes of the absolute accelera- 
tion of a point within the soil deposit and the ‘input’ baserock acceleration: 
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Figure 5 .  Dependence of fundamental mode shapes on type and rate of heterogeneity 

in which: 

q = (1 /4-w2/[c~b2(1  +2i/3)])”z 

Of particular interest is the transfer function for the top of the deposit, i.e. for r‘ = 0. A(? = 0, w )  
has been traditionally called amplification function. In terms of the dimensionless frequency 
factor 

UH 
uo=- 

co 
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the amplification function for the particular deposit under investigation is given by 

2q 
A(ao)=  ( - 0 . 5 + q ) ( l  +d)-0'5-q+(05+q)(l+&0'5+q 

The amplitude of the complex amplification function A(a0) is plotted in Figure 6 for a deposit 
with 6= 0.50 and the two damping ratios, 5 and 10 per cent. To demonstrate the influence of 6, 
parts of the amplification functions containing the first resonant peak are also portrayed in 
Figure 6 for deposits with 6' = 0 (homogeneous deposit), d = 2 and 6 = 10. 

The apparent effects of increasing heterogeneity (i.e. d) are the increase of resonant 
frequencies (as expected from equations (9) and (10)) and the relatively mild increase of resonant 
amplitudes. The latter is further demonstrated through Figure 7 which compares the increase of 
first resonant peaks because of increasing d for all the types of heterogeneous deposits examined 
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Figure 6.  Amplification function for a layer with linearly increasing velocity and constant hysteretic damping, 5 per cent 
or 10 per cent 
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Figure 7 .  Variation of the maximum value of amplification with type and rate of heterogeneity 

herein (i.e. for rn = 1,2 /3 ,1 /2  and 1/4) and two values of the damping ratio (5  per cent and 10 
per cent). The amplification functions for the deposits with in = 2/3, 1/2 and 1/4 are obtained 
from equations (25) and (2) on the basis of the corresponding free-vibration solutions, as was 
shown above for the deposit with rn = 1. For the sake of brevity of the presentation, the formulae 
for the amplification functions of these deposits are not offered here. 

VIBRATIONS DUE TO RAYLEIGH WAVE PROPAGATION 

Theoretical developments 

In horizontally stratified soil deposits in which 
the individual layers are characterized by linearly elastic and homogeneous properties, Rayleigh 
wave propagation can be studied using the method developed by T h o m ~ o n ' ~  and Haske1l.l6 For 
each layer, j ,  the general harmonic solution of the two uncoupled plane wave equations can be 
expressed in terms of two potential functions, q5j and q?j, as follows ; 

4j=[Aj exp(-kajz)+A; exp(kajz)]exp[i(ot-kx)] (31) 

(Li = [Bj exp (-kyjz) +By exp (kyjz)] exp [i(ot - kx)] (32) 
where k = w / c  is the apparent wave number along the horizontal direction; c is the (horizontal) 
phase velocity, common for all layers; ai = [l - ( c / v j )  3 and yj = [l - (C/C~)~]~ '* ,  in which v j  
and c j  are the P- and S-wave velocities of the j layer. The two potential functions are related to 
the horizontal and vertical displacements:" 

Deposit consisting of homogeneous soil layers. 

2 1/2 

d = [ E] = V 4  +Vxq? (33) 
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The boundary conditions of the problem are:8 (i) zero normal and shear stresses at the free 
surface; (ii) continuity of displacements (u, w )  and stresses (wz, T ~ * )  at all layer-interfaces; and 
(iii) no upward propagating waves in the baserock. Imposing these requirements on displace- 
ments obtained from (33) and on stresses obtained from the stress-strain relationships of linear 
elasticity yields a ‘characteristic’ equation (‘dispersion’ relationship) of the form 

f(w9 c )  = 0 (34) 

from which the phase velocities c are numerically determined for each value of the frequency w. 
To each particular c there corresponds an eigenvector or Rayleigh-wave mode d(z ; w, c). Each 
component (horizontal or vertical) of a particular mode is normalized herein to a unit surface 
amplitude, that is, so as to represent the attenuation with depth of the corresponding component 
of modal displacement; i.e. 

express the attenuation of horizontal and vertical displacements, respectively, in the multi- 
layered medium considered. Since the higher Rayleigh wave modes decay extremely fast in the 
frequency range of interest to designers of machine foundations or to earthquake  engineer^,^ 
only the fundamental mode (defined as the mode with the smallest c) is examined in this paper. 

To extend the previous analysis to a soil deposit consisting of 
heterogeneous layers, one must be able to analytically express the solution of the governing 
plane wave equations for each heterogeneous layer j ,  as is done with equations (31), (32) and 
(33) for a homogeneous layer. For an arbitrary variation of S-wave velocity with depth this task 
is formidable, because uncoupling the two equations of motion is possible only in very rare 
cases.’* One of these cases is when the velocity varies linearly with depth. GuptaIg has presented 
a method of uncoupling the governing equations for such a medium in terms of pseudo- 
dilatational and pseudo-distortional wave potentials, 4 and $, defined by 

Heterogeneous soil deposits. 

d = {GV(G-’4) + G-’V x (G $)} exp ( i d )  (36) 

The resulting two uncoupled wave equations are: 

vz4 + [h,(2)324 = 0 (37) 

V2$ + [hs(z)I2$ = 0 (38) 

h p j ( 2 )  = w/o~(z ) ;  h,j = o/c~(z)  (39) 

where the wave numbers, h, and h,, are given for each layer, j ,  by 

where ui, ci are the P- and S-wave velocities, that both vary linearly with depth [e.g. c j  = 
coj(l + bz)] .  Equations (37) and (38) look like the classical wave equations for P- and S-waves. 
However, because of the way the two potentials are related to displacements (equation (36)), 
such P-waves are not purely irrotational, nor are S-waves purely equivoluminal. Nevertheless, 
equations (37)-(38) can be solved analytically after some lengthy operations that can be found 
elsewhere.” The solution is written in terms of modified Bessel functions Z and K of the first and 
second kind, respectively: 

d j  = (1 +bjz)1’2[A~lpi(kaj/bj)+A~Kp,(kaj/bj)] exp [i(wt - k x ) ]  (40) 

(41) $j = (1 +bjz)”2[81~,,(kaj/bi)  + ~ ; ~ ~ , ( k a ~ / b ~ ) ]  exp [i(wt - k x ) ]  
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where: k = w / c  is the apparent wave number along the x direction; a, = 1 + biz ; and the orders pi 
and 4j of the Bessel functions are: 

Notice that in general pi and qj  are complex numbers, if the wave velocities in (42) are multiplied 
by (1 + 2ip)’/’, to account for internal hystereticdamping in the soil. It can easily be shown that, 
for realistic values of p, the real parts of pi, 4j  satisfy the inequality 

that is the necessary and sufficient condition for existence of the modified Bessel functions (see 
Watson” ). 

The analysis proceeds from equations (40), (41), (42) in exactly the same way as the analysis 
for homogeneous-multilayered deposits proceeds from equations (31), (32), (33). 

For the other three types of heterogeneous deposits (i.e. with m = 2/3, 1 /2  and 1/4) 
closed-form solutions of the governing wave equations are not possible to obtain. Rayleigh wave 
propagation in these deposits is studied by using the method described for homogeneous- 
multilayered media. The deposits are divided in 20 layers having a minimum thickness equal to 
0 .03H near the free surface and a maximum equal to 0.10H near the baserock. The velocity of 
the corresponding heterogeneous deposit at the middle of each layer is taken as the constant 
velocity of the layer. 

Characteristic results-effect of heterogeneity 

Results are presented in this section only for one, characteristic value of the dimensionless 
rate of heterogeneity: b’= 3. The baserock velocity is taken as 8c0, where co is the surface 
velocity common to all heterogeneous deposits. No hysteretic damping is considered in the soil, 
since phase velocities and modal shapes that are of interest here are relatively unaffected by 
small amounts of damping. 

Figure 8 compares the ‘dispersion’ relationship of the four heterogeneous and the ‘equivalent’ 
homogeneous deposits. As expected, the phase velocity c tends to the Rayleigh wave velocity of 
the baserock at very low frequencies (high wavelengths) and the dispersion curves of all the 
deposits coincide. Differences show up at frequencies higher than 2 cps, since for very short 
wave-lengths c is controlled by the S-wave velocity of the near-surface soil, which is different in 
the five deposits under consideration. Notice that in the homogeneous deposit c is independent 
of frequency, beyond approximately 3 cps. This implies that the existence of baserock has little 
or no influence on high-frequency R-waves propagating through a relatively deep stratum. For 
instance, in the 100-m-thick deposit examined, the Rayleigh wave-length corresponding to 
f = 5 cps is A R  = c/f i 250/5 = 50 m, i.e. only one-half of the layer thickness H; thus, the 
wave-induced vibrations will be limited to a depth less than H, as is evident from the discussion 
that follows. 

Of greater importance is the attenuation with depth of the vertical and horizontal displace- 
ments of the fundamental mode of a R-wave with frequency w = 27rf. Figure 9 illustrates the 
strong dependence of U ( z )  and W ( z )  on frequency and type of heterogeneity. For the sake of 
simplicity of the figure, only the curves of the heterogeneous deposits with m = 1 and rn = 1/4 
are portrayed, since the m = 2/3 and m = 1/2 curves fall in between those two. 

Two conclusions are drawn from Figure 9. 
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Figure 8. Comparison of the Rayleigh wave dispersion curves ( 6 =  3 and b’= 0). co= 100 rn/sec, H = 100 m 

(i) As the frequency of vibration increases, the attenuation of both horizontal and vertical 
displacements with depth becomes sharper. This is hardly surprising in view of the decrease of 
the wave-length, in all the deposits considered. 

(ii) The fastest decay of motion with depth is observed in the deposit with linearly increasing 
velocity with depth (rn = l),  and the slowest in the homogeneous deposit. With increasing 
frequency, the discrepancies of the two extreme media become more pronounced, whereas the 
attenuation curves of all the heterogeneous strata practically coincide for very high frequencies. 
This suggests that surface wave velocity is the controlling parameter in this frequency range and 
the ‘equivalent’ homogeneous deposit should have the same top rather than the same average 
velocity with the inhomogeneous deposits. 

The above conclusions are of practical significance in the design of wave barriers to isolate 
structures and machine foundations from ground-transmitted vibrations. For active isolation 
with trenches that fully surround the source of vibration, Richart er d4 on the basis of model 
tests recommend that the ratio of trench depth to wave-length of the R-wave (D/L, )  should be 
about 0.6. It is clear from Figure 9 that their recommendation would lead to quite different 
trench depths, depending on the assumed variation of S-wave velocity with depth and the range 
of frequencies that are of interest. At high frequencies a good estimate of the near-surface 
velocity is all that is needed for a proper design of the trench; whereas at very low frequencies it 
is more important to estimate the average velocity of the profile. However, knowledge of the 
variation of the velocity with depth is necessary at the intermediate frequency range. 

The steady-state vibration technique for subsurface soil exploration4 is based on the fact that 
the waves generated by a vertically oscillating circular footing at the surface of a halfspace are 
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Figure 9. Attenuation with depth of horizontal and vertical displacements due to passage of Rayleigh waves. 
c,, = 100 m/sec, H = 100 m 

predominantly Rayleigh waves. Their wave-length, LR, is estimated from the distance between 
any two successive peaks (or troughs) of the vibrating surface and their velocity, cR, is thereby 
determined from 

C R = f L R  (44) 

It is postulated that cR corresponds to a depth of approximately one-half wave-length ( L R / ~ ) ,  
since the bulk of the R-waves travels through a zone of the halfspace about one wave-length 
deep. Thus, by decreasing the frequency of vibrations from an initial value, the wave-length 
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increases and the R-wave motion affects soil at  a greater depth; conversely, wave characteristics 
are also influenced by the soil properties at these greater depths. Therefore, different wave- 
lengths effectively 'sample' material extending to different depths and, thereby, having different 
average properties. According to the widely accepted steady-state vibration technique, it is 
possible to determine the variation of velocity with depth in a soil deposit by assigning the cR 
measured at each frequency to a depth LR/2. 

The validity of the method is tested here for the four types of heterogeneity discussed above. 
Considering sufficiently high frequencies to minimize the influence of the baserock, one can 
determine the wave-length, L R ,  of the R-waves by means of Figure 8 and equation (44). For 
each deposit, the depth d at which the S-wave velocity is equal to the particular cR, is obtained by 
solving: 

Figure 10 depicts the variation with frequency of the depth-to-wavelength ratio, d /LR,  for the 
four heterogeneous deposits having ;= 3 .  The ratio is a slightly decreasing function of 

FRE~)I 'T:NC'Y : <:I,,; 

Figure 10. The velocity determined by steady-state surface vibration techniques corresponds to a depth d shallower 
than what is presently recommended. c,, = 100 m/sec, H = 100 m 

frequency. It has an average value of approximately 0-25, essentially independent of the exact 
type of heterogeneity. This value is only one-half of the recommended value (0-50). However, 
milder rates of heterogeneity lead to larger average values of the d / L R  ratio, closer to 0.50. For 
example, for 6 = 1, average d / L R  = 0.45. 

Therefore, one must be careful in deciding to what depth each value of c corresponds. On the 
basis of the results reported here, it appears that a shallower depth than d = LR/2 is more 
appropriate. For a realistic range of values of the rate of heterogeneity (say: 1 S 3 )  an 
average value of LR/3 is recommended. 

Note, also, that sometimes cR is multiplied by a correction factor R to obtain a better estimate 
of cs.24.25 R is approximated by the ratio, cS/cR, of S- and R-wave velocities in a homogeneous 
halfspace; it is a function of Poisson's ratio only, as shown in Table I. Substituting cs for c, in 
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Table I. R as function of v 

V 0.25 0.33 0.40 0.50 
R 1.088 1.073 1.060 1.047 

equation (45) leads to depth-over-wavelength ratios, d /LR,  that are slightly increasing functions 
of frequency. The average d/LR values, over the frequency range examined, range from 
approximately 0.45, for b’= 3, to 0.70, for 6’= 1. Thus, a value of d/LR = 0.5, as is used presently 
in practice, seems reasonable in this case. 

SEISMIC REFRACTION SURVEY 

The seismic refraction survey is well suited for soil exploration of deposits consisting of layers 
whose stiffness increases with their distance from the surface. The theory on which the method 
is based is well known to the For horizontal, homogeneous layers the travel 
time-vs.-distance (f-x) curve consists of segments of straight lines. Each line corresponds to a 
particular layer and its slope, df/dx, is the inverse of the wave velocity in the layer. The wave rays 
also consist of segments of straight lines, as the first arriving signals travel either directly from the 
source to the receiver or after refraction at a particular layer-interface. 

In a medium with variable velocity Snell’s law of refraction, sinO(z)/c(z) = constant, requires 
that the wave rays have a curvature equal to 

dc 
pdz 

in which p = sin Oo/co is the ray parameter. For a linear variation of velocity, c = co(l + bz), this 
leads to circular ray-paths, as schematically shown in Figure 11. For the other types of 
heterogeneous deposits considered in this paper, the shape of the ray-paths depends on the ray 
parameter p, i.e. on the angle Oo of immergence of the ray into the ground. 
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Figure 1 I .  Illustration of the seismic refraction method. Deposit with linearly increasing velocity on elastic rock 
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The travel time-vs.-distance response curves for the directly arriving waves can be computed 
through the parameter p from the integrals26 

dz 

pc dz 
2 2 1/2 

[ I - P  c 1 (47) 

For a linear variation of velocity, t and x can be evaluated in closed form and the t-x curve is 
given in a dimensionless form by 26*27 

where x '=x /H and ?= t (H/co) .  

line described by: 
If the baserock has a constant velocity, cB, the t-x curve from the refracted waves is a straight 

2 112 2 112 

(49) r=--i+-(cosh- - co 2 1 CB --cosh-'*--[l-(:) ] +[1-(2) ] ) 
CB b co CH 

Equation (49) is derived by considering the path of least time from source to receiver (Figure 11) 
as consisting of a segment of a straight line (refracted wave) and two symmetric arcs of a circle, 
whose tangent at the baserock interface makes an angle i, = arc sin(cH/ca) with the vertical 
(incidental and transmitted waves). For more details, the reader is referred to Dobrin26 or to 
Soriano et a1.27 

Nn3w!I,r7i'r> [>IS7h:J:'! : x 

Figure 12. Dependence of dimensionless time-distance curves on type of heterogeneity 
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For the other three types of heterogeneity under consideration (i.e. p = 2/3,1/2 and 1/4) i 
and .? can only implicitly be related, after evaluation of the integrals in (46) and (47). The 
resulting ?-2 curves of the four heterogeneous deposits have been compared with the travel- 
time curve of an 'equivalent' homogeneous deposit. Figure 12 portrays such a comparison for a 
typical value of the dimensionless rate of heterogeneity, 6' = 2. 

CONCLUSIONS 

A systematic investigation has been presented of the vibrational behaviour of four realistic types 
of heterogeneous deposits with wave-velocities increasing from surface to baserock in propor- 
tion to (1 + pz)" ; p is a positive variable expressing the degree of heterogeneity, while m takes 
the values 1,2/3,1/2 and 1/4 and describes the type of heterogeneity of the deposit. Analytical 
and analytical-numerical methods have been presented to study the dynamic behaviour of such 
deposits due to vertical-shear or Rayleigh waves. Extensive parametric studies have shown that 
as the type and rate of heterogeneity increase, the mode shapes of the deposit in horizontal 
vibrations show a sharper attenuation with depth, whereas the fundamental period of the 
deposit becomes only slightly lower than the corresponding period of a homogeneous deposit 
with the same average velocity. The decay with depth of Rayleigh-wave-induced vibrations has 
been found to depend on the surface wave velocity, the type and rate of heterogeneity, but also 
on the range of vibrational frequencies that are of interest. The importance of the above results 
has been illustrated in connection with the problem of foundation isolation from ground- 
transmitted vibrations and the method of subsurface soil exploration through the steady-state 
surface vibration technique. Finally, the background has been set for the proper interpretation 
of the travel time-vs.-distance curves from seismic refraction surveys of heterogeneous soil 
deposits. 

LIST OF SYMBOLS 

Latin 
A(z ,  o), A(ao)  = amplification function (i.e., ratio of Fourier amplitude spectra) 

a. = dimensionless frequency factor (equation (29)) 
b = rate of heterogeneity of deposit with linear va.riation of velocity 
6 = dimensionless rate of heterogeneity: b = bH 
c = S-wave velocity: c = co(l + gz)"; also, phase velocity of surface waves 

CO, cH = S-wave velocities at top and bottom of a deposit, respectively 
C R  = R-wave velocity 
f = frequency of vibration: f = w / 2 ~  

H =thickness of soil deposit (Figure 1) 
G = shear modulus of soil: G = Go(l +pz)'"' 

Jv, Yv; Iv, Kv = regular and modified Bessel functions of order V, first and second kind, 
respectively 

LR = Rayleigh wave-length 
T = dimensionless time factor: = t (H/co)  

u, w =horizontal and vertical displacements 
U, W = normalized u and w (equation (35)) 

x ' = x / H  
i = z / H  
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Greek 
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CL = rate of heterogeneity, in general: c = co( 1 + pz)”’ 
CZ = p H  dimensionless rate of heterogeneity 
v = Poisson’s ratio 
p = material density 
w = circular frequency 
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